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Abstract

IL2CPP is a significant improvement in Unity game development as a scripting back-
end which transpiles Microsoft Intermediate Language (MSIL) into C++, enabling
AOT (ahead-of-time) compilation for improved performance and cross-platform com-
patibility.

This process generates native binary code, which is significantly harder to re-
verse engineer. Despite this, specific methods can be used to systematically analyze
IL2CPP-compiled applications. This technical analysis demonstrates a structured
process of IL2CPP reverse engineering through a case study of a game in which
multiple layers of obfuscation have been implemented by developers. The analysis
reveals how using both known and original techniques allows for extraction of cru-
cial information from the IL2CPP-generated files, providing a feasible approach for
examining such applications from a security analysis perspective.



Streszczenie

IL2CPP to znaczne ulepszenie w tworzeniu gier za pomocą silnika Unity. Jako
backend skryptowy, transpiluje on kod pośredni MSIL (Microsoft Intermediate Lan-
guage) na C++, co pozwala na kompilację AOT (ahead-of-time). Skutkuje to wyższą
wydajnością i lepszą kompatybilnością międzyplatformową.

Proces ten generuje natywny kod binarny, który jest znacznie trudniejszy do
poddania inżynierii wstecznej, niż MSIL. Mimo tego, istnieją różnego rodzaju metody
umożliwiające systematyczną analizę aplikacji skompilowanych przy użyciu IL2CPP,
korzystające z powszechnie dostępnej wiedzy. W niniejszej analizie technicznej przed-
stawiono ustrukturyzowany proces inżynierii wstecznej aplikacji skompilowanych za
pomocą IL2CPP. Wykorzystano do tego studium gry, w której celowo zaimplemento-
wano wielostopniową obfuskację kodu oraz danych. Analiza ta ujawnia, w jaki sposób
stosowanie zarówno znanych, jak i autorskich sposobów pozwala wydobyć kluczowe
informacje z plików generowanych przez IL2CPP i modyfikowanych przez dewelope-
rów.
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Chapter 1

Introduction

Unity is an extremely popular game engine used by large game companies and indie
developers alike. Its high level of abstraction and user-friendly interface make game
development accessible, even for individuals without prior programming experience.
The engine supports development across multiple platforms, from mobile devices to
computers running major operating systems (Linux, Windows, MacOS).

The widespread popularity of Unity games, however, makes them lucrative tar-
gets for exploits and attacks. Cheating has always been part of the gaming scene,
but in today’s landscape, where games generate substantial revenue, their security
is a critical concern. Modern cheats not only disrupt the player experience but can
also cause significant financial losses for companies. Consequently, developers employ
various countermeasures, yet the effectiveness of these measures is often question-
able. This work addresses these security concerns, specifically by analyzing a backend
technology within Unity considered more secure than its alternative. It demonstrates
how obfuscation techniques can be circumvented, thereby providing insight into the
inner workings of such applications and enabling the retrieval of crucial, protected
information.
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Chapter 2

IL2CPP Internals

2.1 Mono vs IL2CPP in Unity game development

The Unity engine is mainly associated with the C# language, which is often consid-
ered relatively easy to decompile since it typically compiles into Common Intermedi-
ate Language (CIL). CIL is not fully machine code; rather, it retains many high-level
abstractions and metadata elements associated with the original code, such as type
information and variable names. Initially, CIL is also less optimized because it is not
the final code executed by the machine. Instead, at runtime, CIL is passed through
a just-in-time (JIT) compiler, which then generates native code and performs neces-
sary optimizations. This JIT compilation process is key to improving the portability
of applications, allowing them to be executed on various platforms. However, this ap-
proach can lead to slower application performance compared to languages like C++,
which are compiled directly to native code using ahead-of-time (AOT) compilation.

In Unity, developers can choose between two primary backends for their applica-
tions[1]. Mono is the traditional and more popular backend, primarily due to its ease
of use, and it employs JIT compilation. While convenient for development, this also
makes applications using the Mono backend relatively straightforward to reverse
engineer, often requiring only an IL decompiler.

The second backend offered by Unity is IL2CPP. IL2CPP, instead, utilizes AOT
compilation, which significantly improves application performance and can make
analysis significantly harder, as the resulting binary consists of native machine code.

Figure 2.1 presents a diagram illustrating the IL2CPP build process. Initially,
the C# code is compiled into standard .NET assemblies (DLLs). These assemblies
are then processed by a tool that strips unneeded classes and methods to reduce
their size. Subsequently, a Unity-shipped program called IL2CPP.exe transpiles the
IL assemblies into C++ code. Finally, this C++ code, along with the IL2CPP
runtime library, is compiled into the final product.
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Figure 2.1: A diagram in the steps when building an IL2CPP project. Source: [2]

This process generates several key components. One is the main game binary,
usually named GameAssembly.dll, which contains the original application logic com-
piled into a C++ binary. The main executable of the application, however, is often a
small program that loads and runs another generated DLL, typically UnityPlayer.dll
[3]. This UnityPlayer.dll is primarily responsible for initializing and managing the
game engine, including the previously mentioned GameAssembly.dll.

Another crucial generated file is the metadata file, commonly named global
-metadata.dat. This file contains a metadata from the original project’s .NET
assemblies in a serialized format, including information about types, classes, structs,
methods, fields, properties, attributes, (and more) and their relationships. It also
stores string data, such as symbol identifiers (e.g., class and method names) and
string literals used by the application.

This information itself can reveal much about the application, allowing for a
near-reconstruction of its original structure, excluding the exact source code. This
is why IL2CPP, despite its AOT nature, does not inherently prevent reverse engi-
neering, as this metadata is essential for the application’s correct functioning due
to .NET’s reliance on reflection (obtaining information about loaded assemblies and
the types defined within them) and attributes [4]. Because of that, developers try to
protect their applications and often use various techniques to obfuscate this meta-
data file, effectively making the recovery of this information harder. This work will
focus on circumventing such techniques by deobfuscating the metadata file, thereby
demonstrating that these measures are not always enough.



2.2. PROCESS TOOLCHAIN 11

2.2 Process toolchain

To effectively attempt reverse engineering analysis on an IL2CPP application, it’s
fundamental to first understand how its generation process works. While both Mono
and IL2CPP backends in Unity use C# as the primary language, IL2CPP appli-
cations ultimately consist of native machine code. This is because the C# code is
transpiled into C++ (as the “IL2CPP” name suggests); however, several steps occur
before this C++ code is compiled into the final executable.

Figure 2.2: The execution process of an IL2CPP application visualized. Source: [3]

The execution chain can be seen in Figure 2.2. It shows that UnityPlayer.
dll calls GameAssembly.dll. Then, through IL2CPP::vm::Runtime::Init, two
functions are called that process metadata. Before this, however, a startup hook is
executed. DLLs have the capability to run certain functions when they are loaded,
even before any explicit calls are made to their exported functions. One such startup
function in this context is the constructor for IL2CPP::utils::RegisterRuntimeIn
itializeAndCleanup.

This constructor receives a pointer to another function, s_IL2CPPCodegenReg
istration(), and saves this pointer in an initialization function table. This table
is, in turn, accessed later by RegisterRuntimeInitializeAndCleanup::ExecuteI
nitializations(), which is one of the functions called by the aforementioned In
it::ExecuteInitializations(). Which then calls s_IL2CPPCodegenRegistrati
on() via the previously saved pointer. Finally, s_IL2CPPCodegenRegistration()
through few other functions, calls IL2CPP::vm::MetadataCache::Register(). The
crucial action within this last function is storing pointers to IL2CPPCodeRegistrati
on and IL2CPPMetadataRegistration. These are the main tables, embedded within
the binary, that store critical runtime metadata.
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While the global-metadata.dat file provides a wealth of descriptive informa-
tion about the application’s structure (like types and names), it does not inherently
contain the actual executable code instructions or the direct pointers to type-related
runtime data structures that are initialized and used within the compiled C++ bi-
nary. This latter information is instead stored and accessed via the IL2CPPCodeReg
istration and IL2CPPMetadataRegistration tables.

With the knowledge of the process it can be seen that the metadata file works
in tandem with the Registration tables, and probably the most crucial point will be
finding the function IL2CPP::vm::MetadataCache::Register().



Chapter 3

The case analysis

3.1 The target

Numerous video games use IL2CPP as their backend and apply different degrees of
obfuscation. Some developers choose not to make reverse engineering significantly
harder, as the benefits from doing so are often seen as small compared to the cost
of introducing these measures. This is often the case for single-player games, where
cheating mostly affects the fairness of only the individual playing and doesn’t impact
other players, neither the game environment. Additionally, larger companies are
usually more concerned with protecting proprietary code and intellectual property
compared to smaller indie companies. Smaller developers sometimes even share
technical details to encourage community collaboration on product maintenance and
improvement.

The game selected for this case study is a popular video game developed by
a company known for its intricate obfuscation schemes and its ongoing efforts to
counter reverse engineering. Most of this company’s games employ similar tech-
niques, as they are generally consistent in terms of technology stack, gameplay, and
general concepts. Many individuals attempt to recover useful information about
these games’ architectures for a variety of reasons. Motivations range from less eth-
ical ones, such as developing cheats, and in-depth gameplay analysis to determine
optimal strategies or event probabilities, to efforts focused solely on research and ed-
ucation, such as this current work. Additionally, some reverse engineering attempts
aim to enable players to host their own game instances, commonly referred to as pri-
vate servers. The games from this particular company are known for their aggressive
monetization schemes, with many features often locked behind a paywall. Because
of that, some players want the whole game experience without having to pay much,
which is why they use those private servers. Implementations of those private servers
exist, which are open source and can be found on sites like Github. However the
community still has issues with reverse engineering the client, as the information
about its interaction with the servers is also valuable for the development.
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3.2 Metadata and binary files

3.2.1 Metadata files

The standard procedure begins with identifying the metadata file. To achieve this,
the game’s main directory was search for any files having “metadata” in their name.
Surprisingly instead of one, four files were found:

• D:\...\GenshinImpact_Data\Managed\Metadata\global-metadata.dat

• D:\...\GenshinImpact_Data\Managed\Metadata\startup-metadata.dat

• D:\...\GenshinImpact_Data\Native\Metadata\global-metadata.dat

• D:\...\GenshinImpact_Data\Native\Metadata\startup-metadata.dat

This is not a standard practice in IL2CPP; usually there exists one file con-
taining metadata, global-metadata.dat which is present in the Managed directory.
As listed, an additional file named startup-metadata.dat was included. Further
investigation revealed that this file is not documented by Unity Technologies and
that no references to its usage could be found in other known Unity-based games.
What’s more, after inspecting the files’ contents it became apparent that each pair
of files which were named in the same way were identical — confirmed by calculating
their MD5 sums.

The next step is examining the files and comparing the contents with the exam-
ple file from an empty project which was presented in the previous chapter. To do
so, both were opened in HxD. As we can see in Figure 3.1a the header is way differ-
ent from the standard format. There are no magic bytes or a version denominator.
What instead can be seen are bytes 4D 48 59 translating to a string MHY. Which is
an abbreviation of the game’s company name.

The usual header seems to be encrypted due to high entropy of the data. Unlike
typical IL2CPP data files or other sections of the analyzed file (which often contain
high smattering of zeroes), this suspected encrypted header section lacks such pat-
terns. Furthermore, this initial encrypted section spans 0x198 bytes, which is more
than the standard header length. It suggests that not only the header but also the
file’s overall content structure or order might have been altered. During the fur-
ther examination of the file other patterns of encryption were noticed that appeared
periodically, with rest of the file seeming relatively normal (Fig 3.1b).
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(a) Beginning of the file with custom header.

(b) Another part of the file with encrypted contents.

Figure 3.1: Hex dump of the global-metadata.dat file.
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3.2.2 The main binary

In the game currently being analyzed, the Managed folder is conspicuously empty,
containing only a few minor files. However, within the Native folder, a file named
UserAssembly.dll was discovered. This file was identified as a strong candidate for
the main game binary, a suspicion that was later confirmed through investigation.

Interestingly, the Native folder also contains a surprisingly small number of
files. This is likely because many library files, which would typically reside there,
are instead located in the game’s root directory. This arrangement suggests a highly
customized game build.

3.3 Reverse engineering the game binary

The current main objective is to recover the global-metadata.dat file. The
startup-metadata.dat file will be set aside for the time being, as its purpose is
binary progresses, its role may become more evident.

3.3.1 Tools and preparations for analysis

Methods of analysis as well as tools used for analysis in IL2CPP are often highly
specific to the platform. While reverse engineering C++ code is generally a daunting
task, the analysis of IL2CPP is significantly easier thanks to its open-source code-
base. The core components that make up the IL2CPP runtime environment are
written in C++ and included with Unity installations. This access to the source
code proved invaluable during this analysis, allowing for direct comparison between
the decompiled output and the original C++ code, which helped in identifying key
functionalities and points of interest.

Another valuable technique involves building an empty Unity project configured
with the IL2CPP backend. A key in this method is compiling with a Program
Database (PDB) file. PDB files store crucial debugging information for binaries,
such as symbols, denoting information like type definitions and function signatures
[5]. This method yields a binary structurally similar to the target game’s executable
but without its specific customizations or obfuscation. This approach provides a
reference point, acting as an analytical middle-ground between the obscure output
from de-compiling the obfuscated game and the original and clean IL2CPP source
code.

The reason why decompiled code can look so different from the original source
code is twofold, involving both the compiler and the decompiler. On one side the
decompiler applies optimizations, among which are: reordering instructions or chang-
ing structures of loops and conditionals. It also is responsible for inlining functions,



3.3. REVERSE ENGINEERING THE GAME BINARY 17

which directly copies the function body into code, and effectively makes it harder to
follow functions, alters control flow, manages memory (e.g. by optimizing structs’
fields layouts), lowering abstractions (by transforming loops or lambdas into much
simpler forms) and more.

The PDB file is then loaded into the subsequent tool in the analysis workflow: a
decompiler. For this, IDA Pro was used. IDA Pro’s capabilities include disassembling
and decompiling binary files, identifying their sections (e.g., .text, .data), and
supporting the development of custom helper plugins using Python, among other
features. Another key tool used in this analysis was Process Monitor (ProcMon).
According to its official documentation:

“Process Monitor is an advanced monitoring tool for Windows that shows
real-time file system, Registry and process/thread activity. [...] rich and
non-destructive filtering, comprehensive event properties such as session
IDs and user names, reliable process information, full thread stacks with
integrated symbol support for each operation, simultaneous logging to a
file, and much more” [6].

Other tools that were initially considered included debuggers and memory ma-
nipulation tools. However, research revealed that the game features an extensive anti-
cheat system that blocks process attachment and uses anti-debugging techniques[7].
As a result, static analysis was chosen as the primary method for recovering infor-
mation.

3.3.2 Finding places of interest

An effective starting point for the analysis is identifying the code that accesses the
primary metadata file. Once the file is accessed, its contents are assumed to be used
and therefore must be decrypted.

To spot such places, Process Monitor (ProcMon) was used. The program’s func-
tionality to monitor Windows API calls allows one to check when the process opens a
file. What is more, it can look for a particular file. With these filters configured, the
main binary was executed, revealing crucial information. From Figure 3.2a, it can
be seen that there are multiple functions that operate on the file. CreateFile has a
somewhat misleading name as it is also responsible for opening a file. By examining
the first ReadFile call, which reads the entire file starting at offset 0 and spanning
its full length, the corresponding stack trace leading to the call can be inspected.
The most recent function call made within the application resides in
UserAssembly.dll as seen in Figure 3.2b. The function names listed, such as
Ordinal0, are not valid due to the absence of debugging symbols, and the program’s
attempts to deduce them are inaccurate. Instead, what indicates where the call was
made is the absolute address displayed on the right-hand side — 0x7FFE89B55F64.
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This address reveals the exact location of the function call, relative to the base
memory address at which the DLL was loaded. This address, in turn, can be in-
ferred by further inspecting the process itself — that is, where and which DLLs were
loaded. In Figure 3.2c, it can be seen that the base address of UserAssembly.dll is
0x7FFE894D0000. With that information, the binary can be loaded inside IDA Pro
for further inspection.

(a) Calls accessing the metadata file.

(b) Stack trace of the first ReadFile call.

(c) DLL’s loaded by the process.

Figure 3.2: Procmon process inspection.
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3.3.3 Static analysis

Following the analysis phase, a static inspection of the binary was performed using
IDA Pro. To make the process easier, structure definitions were imported to IDA,
as the headers containing them are available due to IL2CPP being open-source.
The source for the header is a Github repository [8] that extracts the headers from
source code to make a IDA friendly format for import. Furthermore, since it had
been established that the metadata file was obfuscated, it was assumed that the
corresponding struct fields were likely obfuscated as well. Therefore, all existing
field definitions were deleted and set to “unknown” + offset for later assignment.

1 typedef struct IL2CPPGlobalMetadataHeader {
2 int32_t unknown00;
3 int32_t unknown04;
4 int32_t unknown08;
5 int32_t unknown0C;
6 // ...
7 int32_t unknown18C;
8 int32_t unknown190;
9 int32_t unknown194;

10 } IL2CPPGlobalMetadataHeader;

Listing 3.1: IL2CPPGlobalMetadataHeader struct

Once the file is loaded in IDA Pro, inspecting the previously found address is
futile. This is because IDA Pro, like many disassemblers, defaults to loading the
DLL at a placeholder base address. To work with the actual addresses the DLL used
during runtime, the file was rebased within IDA. This procedure shifted all internal
addresses, setting the new base address to 0x7FFE894D0000 which as mentioned
earlier, was the base address of UserAssembly.dll, when loaded into memory. After
rebasing, navigating to the point of interest becomes simpler. Using IDA’s “jump to
address” feature, the disassembly view where ReadFile is called can be accessed (as
shown in Figure 3.3). However, since analyzing assembly language exclusively can
be very time-consuming, the code was primarily inspected from this point onward
using the built-in decompiler. This tool generates C++-like code which, though
often verbose, is significantly easier to comprehend than raw assembly.

Figure 3.3: Readfile function under the found address — 0x7FFE89B55F64.
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The current function appears to read a file and then map its contents into
memory. To explore more relevant sections of the code, one can navigate upwards
through the call tree to identify the calling function. This process involves finding
cross-references to the current function, jumping to its callers, and then repeating
these steps. In this particular case, this navigation is straightforward because each
function in the call stack is referenced only once. After bypassing an intermediate
function named sub_7FFFE8896E630, which also seemed to handle file operations,
an interesting function was found (Fig 3.4a). As seen, this function is the one called
with arguments, which are the names of the files that were inspected earlier. During
the analysis of this function, the empty reference project loaded into IDA Pro was
used as a reference point. A search for the global-metadata.dat string within its
code revealed a very similar code snippet, as shown in Figure 3.4b.

These observations also suggest that a simpler method for locating the rele-
vant code snippet would be searching for the string global-metadata.dat and then
navigating to its cross-references. However, this approach may not be effective in
all scenarios, as the underlying process could be more heavily obfuscated, or the
string itself might be absent or further obscured, and the one showed above, should
generally work in most cases.

(a) Snippet in the main binary.

(b) Snippet in the sample project binary.

Figure 3.4: Equivalent code snippets in both binaries.
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A key observation is that the memory location where global-metadata.dat was
initially loaded is not subsequently accessed, even though data from such a file is
utilized by IL2CPP::utils::Memory::Calloc in the empty (reference) project. The
only place where this loaded data appears to be used in the relevant disassembly
segment is immediately after the file is opened:

1 v26 = sub_7FFE89AFEA30("global -metadata.dat");
2 ...
3 qword_7FFE8B96E628 = v26 + 408;

Here, surprisingly, the file pointer v26 is advanced by 408 bytes, which is 0x198
in hexadecimal. This number, 0x198, was previously identified as the size of the
metadata header. Thus, the variable holding the file pointer is moved to a position
immediately after the header, effectively skipping it. This is unexpected, as the
header is crucial for initializing IL2CPP structures, strongly suggesting that the
actual header data is initialized or accessed from a different source.

The code snippets also suggest that a function, sub_7FFE89B561C0, is the
IL2CPP::utils::Memory::Calloc equivalent in the analyzed binary. This conclu-
sion is based on it being called the same number of times and with similar arguments:
its last argument corresponds to the size passed to Calloc, and its second argument
is a specific variable. Those variables match the following definition of the Calloc
function in IL2CPP source code:

1 #define IL2CPP_CALLOC(count , size)
IL2CPP ::utils:: Memory :: Calloc(count ,size)

Interestingly, this second argument, v32 corresponds in purpose to the first
argument used with Calloc in the empty project. For instance, in the second Calloc
call within the empty project, this first argument is sourced from
s_GlobalMetadataHeader->typeDefinitionsCount. This suggests that v32 in the
analyzed code also accesses this specific header field.

Further examination reveals that v32 is assigned from qword_7FFE8B96E620.
Interestingly, this same qword_7FFE8B96E620 is also used in all other instances where
the metadata header is accessed in the reference code. This naturally raises the
suspicion that qword_7FFE8B96E620 (or the data it points to) is the actual metadata
header, and the initially loaded global-metadata.dat data (whose memory region
was not accessed) is merely a decoy. To confirm this suspicion, it’s necessary to
determine when the global variable qword_7FFE8B96E620 receives its value. Listing
cross-references (xrefs) to this variable reveals thousands of instances. However, IDA
Pro allows these references to be sorted by the type of operation (read or write) and
doing so shows only a single write operation to this variable.
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Figure 3.5: Assignment of the real
header.

In that piece of code, multiple
global variables get their values assigned
to data stored in the .rodata section
(which contains static constants, read-
only data). Specifically, in this instance,
the variable qword_7FFE8B96E620 is
assigned the address 0x7FFE8B96E620,
which points to data residing in this sec-
tion. Navigating to this address and in-
specting its contents in a hex viewer con-

firms the theory that this is indeed the actual header. A clear indicator is that the
first three bytes at this location form the developer’s tag (MHY), the same tag previ-
ously observed in the decoy metadata file. It also has the same length as the one in
the global-metadata.dat file.

Figure 3.6: Hex dump of the embedded metadata header.
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3.4 Header recovery

Now that the header has been identified, it is quite straightforward to examine its
cross-references and identify locations where it is accessed. The harder challenge,
however, is determining which field within the header is being accessed at each
location.

To achieve this using static analysis, it is necessary to identify the code segments
surrounding these access calls, as that context reveals where in the code the fragment
under inspection is. This would normally be extremely tedious; however, with access
to the IL2CPP source code and the decompiled output of an empty reference project,
the process can be significantly sped up. The initial step is to identify the function
under inspection, as this is an anchor point for the analysis. Since once the function
is deduced, examining its definition in the IL2CPP source code or its disassembly
(from the reference project as it’s populated with symbols) can reveal which header
fields it accesses. This information then allows these fields to be correctly identified
and renamed in the decompiled view of the target binary.

While the previously described approach to function identification might sound
trivial in theory, its practical application within an obfuscated binary can be a signif-
icant challenge. Identifying the specific function of interest often requires navigating
the call tree to locate any previously identified functions that could serve as land-
marks. This task is complicated by the fact that, initially, most functions in the
binary are unnamed, apart from imported library functions. One effective technique
in the initial stage is searching for unique hardcoded strings, as these sometimes
appear in only a single function within the binary. Although identifying such a
function via a unique string might not seem immediately valuable, it can serve as a
crucial hint if encountered later during further analysis, helping in the identification
of other related code segments. There is a chance, that such a seemingly insignif-
icant function may be called by a more critical one. This relationship, identifiable
via its cross-references (especially if the function has few callers), can then lead to
the discovery and analysis of the more significant calling function.

Even after a function is correctly identified by its name and corresponding source
code, expected references to header fields within that function might still be absent
in the decompiled output, despite being present in the original source. This discrep-
ancy can occur if the original functions are encapsulated by wrapper functions, a
technique that can obscure direct call flows and data access patterns. In other cases,
discrepancies can present in opposite way. A decompiled function might appear
substantially larger or more complex than its original source code counterpart, po-
tentially including header accesses not found in the original. Furthermore, repeated
code segments may be observed within a single function, often as a result of compiler
optimizations such as function inlining.
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3.4.1 Initial observations and modifications

As en example of a process of analyzing the unknown header fields we will look
at the found snippet with IL2CPP::utils::Memory::Calloc calls. Locating the
counterpart to the previously discussed code snippet within the reference project
revealed the function’s name to be MetadataCache::Initialize. For an additional
point of reference, the IL2CPP source code for this function was also examined.

Figure 3.7: Source code reference for the inspected snippet.

Initial inspection suggests that in the decompiled code (Figure 3.4a), the con-
trol flow has not been altered; therefore, it can be assumed that the order of
IL2CPP::utils::Memory::Calloc calls has also not been modified. For the ease
analysis, variable types were temporarily hidden, and previously identified functions
and variables were named.

Additionally, a pointer to tIL2CPPGlobalMetadataHeader was assigned to the
identified header variable. This change was made because this variable was initially
an int64 (64 bit signed integer), and its counterpart in the source code (Figure 3.7) is
also a pointer. Following these modifications, the decompiled code appears as shown
in Figure 3.8. With these changes, the decompiled code is easier to handle, as it now
looks more like the empty project.

3.4.2 Identifying the header fields

The analysis starts with looking at the first IL2CPP::utils::Memory::Calloc call
(referred to simply as Calloc from this point forward) - in Figure 3.8. The second
argument in this call is not the header pointer, but is instead another global variable:
qword_7FFE8B96E608. This matches the pattern in the source code, where the same
kind of argument is s_IL2CPPMetadataRegistration.

As this global variable is likely to appear again in later parts of the analysis, it’s
worth to rename it in the decompiler view from qword_7FFE8B96E608 to its source
code name, s_IL2CPPMetadataRegistration. Furthermore, its type was adjusted
to match the original — a pointer to this structure. After these adjustments, the
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code segment now looks like this:

1 v28 = s_IL2CPPMetadataRegistration [1]. genericMethodTableCount ^
0xC9C11F6i64;

2 v29 = IL2CPP :: utils:: Memory :: Calloc(qword_7FFE8B96E1D0 , v28 , 8i64);

There are a few strange things about this snippet. First, in both the source code
(Figure 3.7) and the empty project (Figure 3.4b), the accessed field is typesCount.
Second, the field in the decompiled code is XORed with a hardcoded value. This
implies that this structure has also been reordered and obfuscated.

Figure 3.8: Source code reference for the inspected snippet.

In the second Calloc call within the analyzed binary, the header field accessed
is unknown140. This field is also XORed and subsequently modified by arithmetic
operations. However, these operations (e.g., bitwise shifts) don’t resemble typical
encryption methods. An examination of the decompiled empty reference project
confirms that these are likely some transformation operations whose complex ap-
pearance may be a result of the compilation process, as they also appear there (Fig
3.4b). This unknown140 field corresponds to typeDefinitionCount in the reference
materials. From this, it can also be deduced that the variable v33 is equivalent to
s_TypeInfoDefinitionTable, as it stores the result of this Calloc call, mirroring the
pattern in both the source code and the empty reference project. A similar pattern
was noted for the previous Calloc call involving s_IL2CPPMetadataRegistration.

Now the same process can be applied to all other Calloc calls. However af-
ter analyzing all of them, a discrepancy appears. In both reference sources, s_
IL2CPPMetadataRegistration is used twice for Calloc, but in the decompila-
tion, it’s just once. While the exact reason for this difference is still unclear for
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now, what has been found so far indicates that some fields originally belonging to
the s_IL2CPPMetadataRegistration structure might have been moved to the main
header. This aligns with earlier observations that the header itself was modified and
is larger than the usual one.

The results of this analysis of the code snippet are presented in Figure 3.9. In
this figure, global variables and header fields have been renamed to their identified
counterparts, and other functions have also been labeled accordingly.

Figure 3.9: Snippet after full analysis.
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3.4.3 Investigating the snippet’s context

It is worth noting that the matching code snippet in the analyzed game binary is
found inside a much larger function than the MetadataCache::Initialize func-
tion from the reference project. This larger function in the game binary con-
tains many more operations, suggesting it is a combined block of code into which
MetadataCache::Initialize, and perhaps other functions, have been inlined. This
inlining also helps explain the significant size difference: the function in the decom-
piled game binary spans over 5000 lines, whereas in the reference project it is only
approximately 300 lines.

This suspected inlining can be investigated by examining the surrounding code
within this large function and by navigating up its call tree. For example, searching
for hardcoded strings within this function can reveal other potential points of interest.
In the beginning of the function under analysis a hardcoded string C can be found as
well as a named variable (Fig 3.10a). Generally a named variable like this shouldn’t
exist, however when the binary was loaded into IDA a notification about existence
of debugging symbols appeared, which may be responsible for that. Even though
the PDB file wasn’t loaded, it is probable that just the generation of it left some
named variables. Looking for the string “C” in the source code, showed a function
that also uses it, as well as variables also using they keyword “locale”. What’s more,
the LC_ALL value is defined in the source code as equal to 0, in a file locale.h.

Now the evidence points that the function Locale::Initialize is located in
the same place as MetadataCache::Initialize, and their bodies are directly copied
there. Another intriguing, very specific piece of code is one shown in 3.10c, where
multiple calls of the same function are made with specific strings that seem to denote
variable types. It was found far into the decompiled code, after the snippet with
Callocs. Searching for those in source code was simple, as it is done only in one
function, Runtime::Init, as seen in 3.10d. Interestingly enough, in the beggining of
that function (Fig 3.11) there is a call to os::Locale::Initialize(), and after that
a call to MetadataCache::Initialize(), which matches the order of those functions
and the snippet in the decompiled code.
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(a) Named variable Locale and string “C”. (b) Similar code in Locale::Initialize.

(c) Characteristic calls with strings. (d) Identical calls in Runtime::Init.

Figure 3.10: Comparable code snippets. Left side — decompiled main binary, right
side — source code.

This suspected inlining can be further investigated by examining the surrounding
code within this large function and by navigating up its call tree. For example,
searching for hardcoded strings within this function can reveal other potential points
of interest. Near the beginning of the function under analysis, a hardcoded string “C”
and a named variable are present (Figure 3.10a). The presence of such a descriptively
named variable is uncommo for a release binary. However, upon loading the binary
into IDA Pro, a notification indicated the existence of debugging symbols (and a path
under which they were saved!), which likely explains this naming. Even if a PDB file
was not explicitly loaded for this analysis, it might be possible that the build process
itself embedded some symbol information, leading to descriptive variable names.

A search for the string “C” in the IL2CPP source code revealed a function that
utilizes this string, alongside variables associated with the keyword “locale”. Further-
more, the symbolic constant LC_ALL is defined with a value of 0 within the locale.h
source file. After those findings, it can be safely assumed that the function that
unpacks metadata is actually Runtime::Init, with many of its functions inlined.
For confirmation other functions like os::Thread::Init() and Thread::Initializ
e() were investigated to see if that’s the same case for them and indeed it was. The
analysis done so far helped identify several different functions within the large, de-
compiled code block. This, in turn, enables the identification of header fields accessed
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Figure 3.11: Beginning of the Runtime::Init function.

in other segments of this block, as knowing which original function is responsible for
an access helps narrow down the candidate fields from the header structure.

3.4.4 Deobfuscating deliberate misdirection

The process described previously is the general framework for identifying header
fields. Initially, this involves identifying functions by searching for distinctive code
patterns or data references, such as unique strings. These candidate functions are
then cross-referenced with the IL2CPP source code or the decompiled output of
the empty reference project. Once a function (and potentially surrounding functions
within the inlined block) is identified, the specific header fields it accesses can be rec-
ognized. This investigative process can then be applied to “neighbouring” or related
functions. Sometimes, however, even after a function is identified, further detailed
analysis may be necessary. This is because the decompiled code can still differ sig-
nificantly from both the original source code and the reference project’s output, due
to the mentioned changes introduced by the compiler or deliberate modifications by
the developers.
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One such example is a code snippet within the MetadataCache::Initialize
function. This snippet extracts ImageDefinition data from the metadata file to
populate an ImagesTable structure. This segment is located immediately after the
previously analyzed Calloc calls and is present in both the decompiled target binary
and the reference project.

(a) ImagesTable population in the main binary.

(b) ImagesTable population in source code.

Figure 3.12: ImagesTable populations in source code and a misleading one in the
main binary.
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Looking at the decompiled code from the reference project (Listing 3.2) next to
the original IL2CPP source code (Figure 3.12b), it’s clear they are functionally the
same. Although the loop in the reference project’s output appears highly convoluted,
its core logic mirrors that of the source code. For instance, both versions assign a
name to each image definition: the reference project’s code does so by directly ac-
cessing metadata (using imagesOffset field from the header), while the source code
employs a higher-level abstraction, GetStringFromIndex. Similarly, the variable v3
in the reference project, which corresponds to the imagesDefinitions pointer from
the source code, is also incremented within its loop. The direct addition of 8 to v3
in the reference project mirrors the imageIndex++ iterator increment in the source
code’s loop.

However the situation is vastly different in how this snippet looks in the main
binary (Fig 3.12a). Notably, the imagesDefinitions variable isn’t created, as there’s
no access to an imagesOffset from the metadata header as seen in the references.
Instead, the s_ImagesTable global variable receives hardcoded values for each of its
members. This behavior seems atypical for genuine data population and likely is a
confusion tactic against reverse engineering efforts. This shows that behavior can
deviate significantly from standard patterns due to purposeful obfuscation.

To find the actual image data assignment, it was necessary to trace other oc-
currences of s_ImagesTable. Although direct cross-references were scarce (only
three, including its initial assignment), further investigation revealed that another
global variable was assigned the value ofm s_ImagesTable. Tracing this second
global variable, in turn, led to the relevant code sections where the true data as-
signment occurs. This path allowed for the identification and assignment of the
correct header field, imagesOffset, because a structurally similar code snippet was
found — one that accesses a header field and then uses it in calculations involving
the actual images table. As shown in Listing 3.3, the stringOffset header field is
also accessed in this context. The variable v116 (representing the true images table,
real_s_ImagesTable) has its individual images accessed by adding multiples of 96
(the size of the IL2CPPImage struct, stored in v118) to v116, with fields subsequently
accessed via offsets.

Furthermore, the values assigned to these image table fields are also XORed,
implying that the image definitions themselves are encrypted within the metadata
file. Another key takeaway from this deeper analysis is the first clear use of the
startup-metadata.dat file; it appears to hold some of the data structures typically
found in the main metadata file. Since startup-metadata.dat lacks its own header,
and the global metadata header is used for extracting its contents, this implies that
the header in global-metadata.dat file stores offset tables for both itself and the
startup-metadata.dat file.
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To validate these conclusions, the value in the global-metadata.dat header
at offset 0x194 was extraced and XORed with the constant 0x162168BDi64, re-
sulting in the number 0x37BBC. To confirm if data at this resulting offset within
startup-metadata.dat was encrypted, the file was opened and its contents at this
address were inspected. Indeed, as shown in Figure 3.12 (presumably a hex view or
similar), the data at this location appeared to be encrypted, and the encrypted parts
started exactly at this offset, which confirmed the hypothesis.

1 s_ImagesCount = s_GlobalMetadataHeader ->imagesCount >> 5;
2 s_ImagesTable = IL2CPP :: utils :: Memory :: Calloc(s_ImagesCount ,

0x40ui64);
3 ...
4 v1 = s_GlobalMetadataHeader;
5 v2 = s_GlobalMetadata;
6 v3 = (s_GlobalMetadata + s_GlobalMetadataHeader ->imagesOffset);
7 v4 = 0;
8 v5 = 0;
9 v6 = s_ImagesCount;

10 if ( s_ImagesCount > 0 )
11 {
12 v7 = 0i64;
13 do
14 {
15 v8 = v7 + s_ImagesTable;
16 v9 = v2 + v1 ->stringOffset + *v3;
17 *(v7 + s_ImagesTable) = v9;
18 [...]
19 *(v8 + 16) = v16;
20 *(v8 + 24) = v3[2];
21 *(v8 + 28) = v3[3];
22 *(v8 + 32) = v3[4];
23 *(v8 + 36) = v3[5];
24 *(v8 + 40) = v3[6];
25 *(v8 + 56) = v3[7];
26 *(v8 + 60) = 0;
27 if ( v50 >= 0x10 )
28 [...]
29 ++v5;
30 v3 += 8;
31 v7 += 64i64;
32 [...]
33 }
34 while ( v5 < s_ImagesCount );
35 }

Listing 3.2: ImagesTable population snippet from the decompiled empty project.
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1 if ( real_s_ImagesCount > 0 )
2 {
3 v113 = (char *) startupMetadataFile +

(globalMetadataHeaderReal ->unknown194 ^ 0x162168BDi64);
4 v114 = 0i64;
5 v759 = (__int64)startupMetadataFile +

(globalMetadataHeaderReal ->unknown194 ^ 0x162168BDi64);
6 do
7 {
8 v115 = ((629846663 * (43086 * v114 ^ 0x343BDEE8) + 716843428) ^

0x33FC08D4) + 1562760747;
9 v116 = real_s_ImagesTable;

10 v117 = (signed __int64)GetStringFromIndex(v115 ^ *( _DWORD
*)&v113 [40 * v114 + 16] ^ 0x5C34F96u);

11 v118 = 96 * v114;
12 [...]
13 *( _QWORD *)(v116 + v118 + 80) = v134;
14 *( _DWORD *)(v116 + v118 + 24) = (v115 ^ *(( _DWORD *)v132 + 8) ^

0xE9E10CD) + 1123462149;
15 *( _DWORD *)(v116 + v118) = (v115 ^ *(( _DWORD *)v132 + 7) ^

0x4FE26013) + 2025947892;
16 *( _DWORD *)(v116 + v118 + 12) = (v115 ^ (*(( _DWORD *)v132 + 2)

- 1408302495)) + 1295256737;
17 *( _DWORD *)(v116 + v118 + 72) = v115 ^ (*( _DWORD *)v132 -

338802593) ^ 0x2CA758E7;
18 [...]

Listing 3.3: Actual ImagesTable fields assigning code.

A similar pattern of misdirection and data relocation occurred with other struc-
tures (e.g., s_AssembliesTable) and their corresponding header fields. An analogous
technique, involving tracing variable assignments and cross-references, was used to
identify their true locations and values.

Figure 3.13: Encrypted contents of the startup-metadata.dat file, present as
expected.
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3.4.5 Code recovery

Ultimately, these techniques create a compounding effect: the more code that is
analyzed, the easier subsequent analysis becomes. As more functions are identified,
it is progressively simpler to correlate and understand others. Consistent renaming
and retyping of identified functions and variables are therefore crucial practices that
should be maintained throughout the analysis. By applying these methods, a sub-
stantial part of the header was successfully recovered: approximately 29 offset fields,
most of which are significant (such as those related to methods), and 9 count fields.

Notably, the number of recovered count fields (9) is considerably lower than
the number of offset fields (29), despite offset fields often having a corresponding
count field in typical data structures. This discrepancy is likely because, in IL2CPP,
such count fields are mainly used for runtime assertions rather than, for example,
managing loop iterations. In the decompiled binary, these assertions were often
absent –— a finding that strongly suggests deliberate developer tampering, as it is
unlikely a compiler would optimize away assertions based on values read from a file
(and thus unknown at compile-time). The absence of these explicit count fields,
however, does not necessarily prevent file reconstruction. Once the offsets of various
data sections are known, the corresponding counts can often be inferred, as one data
section begins where the previous one ends.

A substantial amount of functions and global variables have also been uncovered,
with many functions performing critical tasks known, which will prove helpful in the
following chapters.



Chapter 4

String decryption

Recovering the header and decrypting most of its fields can often be the end of
analysis, as the metadata file is fully recovered. However in the case under the
analysis, that’s not the end of all as developers took great care into making the feat
harder. In chapter 2 it was noted that the metadata file does not only store an
encrypted header, but also parts of it are encrypted. As the structure of the file
is now more clear, it all points to the string tables being encrypted. As in plain
metadata files, there are usually chunks that store all kinds of strings

To achieve full recovery of the metadata file, decrypting these strings is crucial.
Fortunately, with the code structure partially recovered and the functions operating
on strings — along with the header field responsible for string table access already
identified, locating the relevant decryption snippets is an easier task. It’s important
to note that there are two kinds of strings — normal strings and string literals. The
first ones are identifiers and labels, for example class or method names. The literals
are used in application code, for example error messages. Within the metadata,
string literals themselves are managed using two distinct tables: stringLiterals
and stringLiteralsData.

The stringLiterals table contains entries, each consisting of two 32-bit inte-
gers: the first is an offset into the stringLiteralsData table, and the second specifies
the length of the string. Using these offset and length pairs, it’s possible to read the
actual string content from the stringLiteralsData table. The strings in this data
table are stored one after another, without any alignment or null terminators, hence
the need for the length information for correct retrieval.

The situation with normal strings is simpler, as they are typically accessed
directly by an index. The table storing them is often structured such that each
string begins at the location indicated by its index and is then null-terminated,
making retrieval straightforward once the index is known. This chapter will mainly
focus on string literals, with only a brief mention of normal strings, as the process of
retrieving normal strings can be considered a simpler version of the methods required

35
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for string literals.

4.1 Code overview

4.1.1 Finding relevant code

A function that accesses string literal data, as identified from the IL2CPP source
code, is GetStringLiteralFromIndex. However, this function was not initially found
or named in the decompiled target binary. To locate its equivalent, the source code
was examined to determine which functions call GetStringLiteralFromIndex. This
revealed that it is exclusively called by MetadataCache::InitializeMethodMeta
data(). Since MetadataCache::InitializeMethodMetadata() had already been
identified during the previous analysis, it’s simple to navigate to its location.

As shown in Figure 4.1 (from the source code), GetStringLiteralFromIndex is
invoked within a switch statement when the result of GetEncodedIndexType(encod
edSourceIndex) corresponds to kIL2CPPMetadataUsageStringLiteral, which has
a value of 5. The decompiled version of MetadataCache::InitializeMethodMetad
ata() in the target binary also contains a switch statement whose cases appear to
directly correspond to those in the original source, albeit with some alterations to
the control flow.

Examining the case for the value 5 in the decompiled code (Figure 4.2), only
one function call is present: sub_7FFE89B01120. This function is suspected to either
be GetStringLiteralFromIndex or IL2CPP::vm::String::NewLen, as the only the
former is called within this case, and the latter is called within it, and there’s a
possibility of inlining.

Figure 4.1: MetadataCache::InitializeMethodMetadata function in source code.
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Figure 4.2: MetadataCache::InitializeMethodMetadata function in the
decompiled code.

4.1.2 Identifying variables and their purposes

To understand the decryption process, it is crucial to analyze the code’s behav-
ior, with variables being crucial. This analysis begins with the previously identi-
fied function of interest, sub_7FFE89B01120. While initially thought to be either
GetStringLiteralFromIndex or IL2CPP::vm::String::NewLen, the arguments
passed to sub_7FFE89B01120 in the target binary differ significantly from those doc-
umented for GetStringLiteralFromIndex in its source code. In the source, the
only argument passed to GetStringLiteralFromIndex is decodedIndex, which is
the result of the GetDecodedMethodIndex function called with metadataUsagePairs
->encodedSourceIndex. In contrast, the decompiled function sub_7FFE89B01120 is
called with three arguments. All of these arguments appear to have undergone trans-
formations (such as multiplication, XORing, and bitwise shifting), and the variables
supplying these arguments have also been heavily modified in previous code sections.
This is particularly evident for the variable v15, which is used in numerous places
throughout the function, including as an argument in every function call within each
case of the switch statement. For example, it is passed to a function in the sixth
case as follows:
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1 case 6u:
2 v16 = v14;
3 if ( *( _QWORD *)(*( _QWORD *)(s_StringLiteralTableMaybe + 72) +

8i64 * v14) )
4 goto LABEL_5;
5 if ( v15 ) {
6 [ ... ]
7 v24 = (char *)
8 MetadataCache :: GetMethodInfoFromMethodDefinitionIndex
9 (v15 , v4 , a2, a3);

10 }
11 else {
12 v24 = 0i64;
13 }

This pattern strongly suggests that v15 likely holds values corresponding to both
encodedSourceIndex and decodedIndex from the source code, depending on how it’s
utilized in different operations. The second variable used in the investigated Calloc
call is v27. Upon initial inspection, v27 appears to be a pointer to a particular
string literal. This can be inferred by examining its member variables and their
assignments, as illustrated below:

1 3 = globalMetadataHeaderReal;
2 v4 = globalMetadataNoHeader;
3 [...]
4 v27 = v4 + v3 ->stringLiteralOffset - 366108145;

The typical pattern of accessing a metadata field is evident here: first, the offset
of the target table (stringLiteralOffset) is extracted from the header, and then
this offset is added to the base address of the metadata file (v4) to determine the
beginning of the table. The subtraction of a constant instead of the expected XOR
operation for decryption is not too strange; this could be a compiler optimization or
an alternative interpretation by the decompiler.

While the contents of v27 are clear, the origin of v15 requires further investi-
gation. A closer look at the beginning of the large function (Figure 4.3) shows that
variables used in its initial calculations are either global, derived from previously
identified header fields, or are arguments to this encompassing function. The only sig-
nificant input variable whose value is not immediately available from static globals or
header fields is the index parameter with which the original MetadataCache::Initi
alizeMethodMetadata (and by extension, the inlined GetStringLiteralFromIndex)
is effectively called. As its name implies, this index is used in subsequent calculations
for method metadata.

Fortunately, an examination of the calls to this function reveals that this index
is always supplied as a hardcoded value, not a variable. To retrieve all such indices,
a simple IDAPython plugin was developed, as the large number of cross-references
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made manual extraction of these arguments unfeasible. The plugin’s output is visible
in IDA Pro’s output window, and can be written to a file using Python. The two
other variables passed as an input to this function, but not in its original source code
are not critical to this specific analysis path, as they are used only in switch cases
not currently under investigation.

4.2 Writing decryption code

4.2.1 Preparing inputs for the decryption function

The preceding findings suggest that there is a viable path to retrieve the string liter-
als: by reimplementing the relevant function logic in an external script or program.
This script would replicate the operations performed by the decompiled code up to
the point of the end of case 5, then apply the logic of sub_7FFE89B01120 (previ-
ously identified as GetStringLiteralFromIndex) to decrypt and retrieve the string.
Several other methods were considered before opting for this solution, as rewriting
potentially messy decompiled code can be error-prone and time-consuming. One
alternative was to call the function directly from the DLL using its known offset.
However, this approach would omit initial assignments of global variables related to
metadata, rendering their pointers invalid. Another solution considered was attach-
ing a debugger to a running instance of the game to call the function after all vari-
ables were initialized, but the previously mentioned anti-cheat and anti-debugging
measures would probably prevent this. Thus, the approach of reimplementing the
decryption logic, while harder, was chosen.

In the beginning of the decrypting code, files are mapped in the memory, and
needed header fields are assigned to variables:

1 MemoryMappedFile mmf1(headerPath.c_str(), 0x0);
2 MemoryMappedFile mmf2(metadataPath.c_str(), 0x198); // Skip the

fake header.
3 uint32_t valueMetadataUsageLists = read32(mmf1.getData (), 0x28) ^

0x6F7A555B;
4 uint32_t valuestringLiteralData = read32(mmf1.getData (), 0xD8) ^

0x714D8F09;
5 uint32_t valuestringLiteral = read32(mmf1.getData (), 0x30) -

366108145;
6 uint32_t valuemetadataUsagePairs = read32(mmf1.getData (), 0x138)

- 2106723582;
7 uint32_t index = 0x17A1u;

Reading the identified header fields is now straightforward. Since the fields
and their offsets within the actual header structure (found embedded in the binary)
are known, their values can be read directly. Furthermore, previous analysis of the
decompiled code has revealed the XOR keys necessary for decrypting these field
values. For the current test, a hardcoded value has been assigned to the index
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variable.

Let’s now analyze the operations occurring at the beginning of the IL2CPP::v
m::MetadataCache::InitializeMethodMetadata function, before its main switch
statement, as depicted in Figure 4.3. Initially, the variable v6 is assigned a value:

1 v5 = globalMetadataNoHeader +
(globalMetadataHeaderReal ->metadataUsageListsOffset ^
0x6F7A555Bi64);

2 v6 = *( _DWORD *)(v5 + 4i64 * a1);

Figure 4.3: Operations in the beginning of the
IL2CPP::vm::MetadataCache::InitializeMethodMetadata function.

From prior breakdown, it’s obvious that v5 points to the beginning of the meta-
dataUsageLists table within the metadata file; in the preceding line, v5 was assigned
the base address of the metadata (globalMetadataNoHeader) plus the table’s off-
set retrieved from the header. The assignment to v6 therefore dereferences this
table pointer (v5) after incrementing it by 4 * a1 (where a1 is the index). This
effectively retrieves the i-th (i corresponding to index) DWORD value from the
metadataUsageLists table. This operation is notably similar to the source code line
assigning the metadataUsagePairs variable (previously shown in Figure 4.1), which
uses the MetadataOffset() function. The MetadataOffset() function takes the meta-
data pointer, s_GlobalMetadataHeader->metadataUsageListsOffset, and the in
dex as arguments, performing an equivalent calculation to that observed in the v6
assignment.

A very similar pattern occurs with the variable v8. A key difference is that the
index (passed as a1) is incremented by one before being multiplied by 4 and used in
the offset calculation. While additional intricate operations involve v8, the current
focus is on this indexed access. The incrementation of the index by 1 for v8 suggests
access to a subsequent element or a related field within a structure.

To gain more insight into these operations, it’s helpful to examine the IL2CPPM
etadataUsageList structure:
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1 struct IL2CPPMetadataUsageList
2 {
3 uint32_t start;
4 uint32_t count;
5 };

It is very simple — it has two fields of size 4 bytes. In the source code two
variables are assigned both start and count, and named accordingly.

1 uint32_t start = metadataUsageLists ->start;
2 uint32_t count = metadataUsageLists ->count;

So the first is a value at the beginning of the metadataUsageLists, and the
second one is on the offset of 4 bytes. And this is exactly what is happening in
the decompilation with variables v6 and v8. The first one — v6 is assigned meta-
dataUsageLists, as it just takes the index of the pair without any offset, and v8 is
metadataUsageLists incremented by one field, as there is +1 added to the index and
then multipled by 4, that gives an offset of 4. Which makes the adding of 1 actu-
ally produce a displacement of 4 bytes. Therefore they are corresponding to start
and count. One difference between source code and decompilation is the intricate
calculations. Between v6 and v8 there is a variable v7, which just seems like an
arbitrary value calculated using the index. It has no reference to any pointers, just
pure arithmetic. Now the following code, mirroring the behavior can be written:

1 uint32_t index = 0x17A1u;
2 int32_t v6 = read32(mmf2.getData (), valueMetadataUsageLists +

(int64_t)4 * index); // start
3 uint64_t v7 = (1014436965 * ((( int64_t)16032818195816 * index +

(int64_t)135075829961382283) >> 8) >> 19) ^ 0x990884EE;
4 int64_t v8 = read32(mmf2.getData (), valueMetadataUsageLists +

(int64_t)4 * (index + 1)) // count
5 + (( uint32_t)(1014436965 * ((( int64_t)16032818195816 *

(uint64_t)(index + 1) + (int64_t)135075829961382283)
>> 8) >> 19) ^ 0x990884EE) - (v6 + v7);

The variable v7 and operations on v8 have been simply rewritten, as under-
standing their purpose is unnecessary for the time being and there is a possibility
that after the whole analysis it will be possible to tell their purpose. The next seg-
ment of code encountered is an if statement, which envelops the main loop and the
switch statement. Within it, an assignment is made to the variable v10:

1

2 if ( *( _DWORD *)(v5 + 4i64 * (a1 + 1))
3 + (( unsigned int)(1014436965 * ((16032818195816 i64 * (unsigned

__int64)(a1 + 1) + 135075829961382283 i64) >> 8) >> 19) ^
0x990884EE) != v6 + v7 )

4 {
5 v10 = (unsigned int)(v6 + v7 - 851580944);
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Upon closer examination, the leftmost side of the if statement’s condition mirrors
the expression used to calculate v8, but without the subtraction of (v6 + v7). When
this term is subtracted from both sides of the if condition, the condition simplifies
to v8 != 0. Thus, the if statement essentially checks if v8 is non-zero.

The value of the v10 variable can be calculated with the information currently
available. However, its specific purpose is not immediately apparent from this initial
assignment, so the analysis will now proceed to the main loop containing the switch
statement:

1 while ( 2 )
2 {
3 v11 = v4 + v3 ->metadataUsagePairsOffset - 2106723582;
4 v12 = 742369971 * ((956247808 * (57417 i64 * (unsigned int)v10 ^

0x72878364ui64) >> 13) ^ 0x6BDB5ACC) >> 15;
5 v13 = v12 ^ *( _DWORD *)(v11 + 8i64 * (unsigned int)v10) ^

0x207BBCFC;
6 v14 = v12 ^ (*( _DWORD *)(v11 + 8i64 * (unsigned int)v10 + 4) -

1043264072);
7 v15 = v13 & 0x1FFFFFFF;
8 switch ( v13 >> 29 )
9 {

10

11 [switch statement body]
12

13 }
14 }

Since expressions similar to the one assigning v11 were seen before, it can now
be determined that v11 holds a pointer to the metadataUsagePairs table in the
metadata file. This pointer’s value was calculated in earlier preparation steps. Next,
v12 is set to an arithmetic value calculated using v10.

It can be seen that v12 is then used as an XOR key for other variables, suggesting
it’s part of a more complex obfuscation scheme. The first variable XORed with
v12 is v13. Besides this XOR operation, the calculation for v13 is very similar to
that of v6 (discussed previously). Specifically, v11 (the pointer to the start of the
metadataUsagePairs table) is incremented by an offset equal to 8 multiplied by an
index, v10.

Looking at the IL2CPP source code reveals a nearly identical pattern to what
was seen with metadataUsageLists. This similarity stems from the way metadataU
sageLists and metadataUsagePairs are assigned is structurally the same. Both the
IL2CPPMetadataUsageList and IL2CPPMetadataUsagePair structures are similar:

1 struct IL2CPPMetadataUsagePair
2 {
3 uint32_t destinationIndex;
4 uint32_t encodedSourceIndex;
5 };
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From this, it’s straightforward to deduce that v13 and v14 in the decompiled code
correspond to destinationIndex and encodedSourceIndex respectively, from the
source code loop.

The next variable, v15, is simply the encodedSourceIndex (v14) ANDed with
a constant. This operation directly corresponds to the calculation of decodedIndex
in the source code. Similarly, the expression used in the switch statement in the
decompiled code is equivalent to the usage variable from the source code. These
conclusions are based on comparing the decompiled logic with the following source
code segment:

1 IL2CPPMetadataUsage usage = GetEncodedIndexType(encodedSourceIndex);
2 uint32_t decodedIndex = GetDecodedMethodIndex(encodedSourceIndex);
3

4 static inline IL2CPPMetadataUsage
GetEncodedIndexType(EncodedMethodIndex index){

5 return (IL2CPPMetadataUsage)(( index & 0xE0000000) >> 29);
6 }
7 static inline uint32_t GetDecodedMethodIndex(EncodedMethodIndex

index){
8 return index & 0x1FFFFFFFU;
9 }

One caveat here is that the AND operation, which precedes the shift in the source
code, has been omitted in the decompiled output. This is likely an optimization
performed by the compiler, which determined the AND operation to be redundant
in this context. Furthermore, the functions in question are marked with the inline
keyword in the source code, explaining why they do not appear as separate function
calls in the decompiled binary but are instead integrated directly into the calling
code.

New step is be going back to the interesting 5th case in the switch statement
and analyzing what happens to each of the variables inside it, as all of the ones that
make up variables inside that case are known.



44 CHAPTER 4. STRING DECRYPTION

1 case 5u:
2 v16 = v14;
3 if ( *( _QWORD *)(*( _QWORD *) s_StringLiteralTableMaybe +

8i64 * v14) )
4 goto LABEL_5;
5 v27 = v4 + v3 ->stringLiteralOffset - 366108145;
6 v24 = (char *) sub_7FFE89B01120(
7 v15 ,
8 (signed int)( -404766271 * (1609814976 *

(59818 i64 * v15 ^ 0x68A8FCAEui64) >> 23)
9 + (*( _DWORD *)(v27 + 4i64 * v15)

^ 0x57564700)
10 - 1984691239)
11 + v4
12 + (v3 ->stringLiteralDataOffset ^

0x714D8F09i64),
13 -404766271 * (1609814976 * ((59818 i64 * v15

+ 59818) ^ 0x68A8FCAEui64) >> 23)
14 - ( -404766271 * (1609814976 * (59818 i64 * v15

^ 0x68A8FCAEui64) >> 23)
15 + (*( _DWORD *)(v27 + 4i64 * v15) ^

0x57564700))
16 + (*( _DWORD *)(v27 + 4i64 * v15 + 4) ^

0x57564700));
17 v25 = (_QWORD *) s_StringLiteralTableMaybe;
18 goto LABEL_4;
19 [...]
20 LABEL_4:
21 *( _QWORD *)(*v25 + 8 * v16) = v24;
22 v4 = globalMetadataNoHeader;
23 v3 = globalMetadataHeaderReal;
24 }
25 goto LABEL_5;
26 default:
27 LABEL_5:
28 v10 = (unsigned int)(v10 + 1);
29 if ( --v8 )
30 continue;
31 return (*(& IL2CPP ::utils :: Memory ::Free + 1))(0i64);
32 } // End of the switch
33 } // End of the while loop

Let’s first examine the variable v16. It is assigned the value of v14 and is
subsequently used only in an assignment at LABEL_4 (a label within the decom-
piled code). Assuming v25 represents the StringLiteralTable, the operation at
LABEL_4 indicates that v16 serves as an index into this table, and the value of
v24 is stored at this indexed location. Since v24 holds the result of the function of
interest (presumably the decrypted string literal), this operation effectively saves the
retrieved string literal into the StringLiteralTable.
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Following this, an if statement checks if a value has already been written to that
specific location in the StringLiteralTable. If data is already present, v10 (acting
as a primary loop counter or index) is incremented, and the loop proceeds to the
next iteration, provided that count (which is decremented) is not yet zero.

Next, the variable v27 is calculated. This involves another access to the meta-
data file, this time targeting the stringLiteralData table (or a similar table for
string content), an operation similar to what was performed during the initial data
preparation phase. The next key step involves examining the mysterious function
call. This call takes three arguments: v15 and two other, more complex expressions.
To determine the nature of these latter two arguments, a quick examination of the
original GetStringLiteralFromIndex function in the source code is required:

1 IL2CPPString*
MetadataCache :: GetStringLiteralFromIndex(StringLiteralIndex index)

2 {
3 if (index == kStringLiteralIndexInvalid)
4 return NULL;
5

6 IL2CPP_ASSERT(index >= 0 && static_cast <uint32_t >(index) <
s_GlobalMetadataHeader ->stringLiteralCount /
sizeof(IL2CPPStringLiteral) && "Invalid string literal index
");

7

8 if (s_StringLiteralTable[index])
9 return s_StringLiteralTable[index];

10

11 const IL2CPPStringLiteral* stringLiteral = (const
IL2CPPStringLiteral *)(( const char*) s_GlobalMetadata +
s_GlobalMetadataHeader ->stringLiteralOffset) + index;

12

13 s_StringLiteralTable[index] = String :: NewLen ((const
char*) s_GlobalMetadata +
s_GlobalMetadataHeader ->stringLiteralDataOffset +
stringLiteral ->dataIndex , stringLiteral ->length);

14

15 return s_StringLiteralTable[index];
16 }

This structure closely resembles the operations within the fifth case of the
switch statement in the decompiled code. This similarity strongly suggests that
GetStringLiteralFromIndex was indeed inlined, and consequently, the function
sub_7FFE89B01120 (which was initially thought to be GetStringLiteralFromIndex)
is more likely the IL2CPP::vm::String::NewLen function. This revised identification
is supported by the observation that sub_7FFE89B01120 takes multiple arguments
which appear analogous to those expected by String::NewLen (such as a character
pointer and a length), rather than the single index argument of GetStringLiteral
FromIndex.
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Based on this re-evaluation, it can be deduced that the second argument to
sub_7FFE89B01120 is the string literal itself, and the third argument is its length.
This particular identification proved valuable during the development of the decryp-
tion script. The recovered length parameter served as something akin to a sanity
check to help verify the correctness of previous calculations, especially during ini-
tial testing when wrongly calculated lengths sometimes resulted in extremely large,
unreasonable values.

1 if (v8 == 0) {
2 cout << "v8 = 0, aborting";
3 return 1;
4 }
5 uint64_t v10 = (unsigned int)(v6 + v7 - 851580944); //

metadataUsagePairs
6 while (1){
7

8 int64_t v12 = 742369971 * ((956247808 * (( int64_t)57417 *
(unsigned int)v10 ^ (uint64_t)0x72878364) >> 13) ^
0x6BDB5ACC) >> 15;

9 uint32_t v13 = v12 ^ read32(mmf2.getData (),
valuemetadataUsagePairs + 8 * (unsigned int)v10) ^
0x207BBCFC; // destinationIndex

10 uint32_t v14 = v12 ^ read32(mmf2.getData (),
valuemetadataUsagePairs + 8 * (unsigned int)v10 + 4) -
1043264072; // encodedSourceIndex

11 uint32_t v15 = v13 & 0x1FFFFFFF;
12

13 if((v13 >> 29) == 5){
14 uint32_t stringLiteralLength = read32(mmf2.getData (),

valuestringLiteral + 4 * v15) ^ 0x57564700;
15 uint32_t stringLiteraldataIndex = read32(mmf2.getData (),

valuestringLiteral + 4 * v15 + 4) ^ 0x57564700;
16 char * str = (signed int)( -404766271 * (1609814976 *

(( int64_t)59818 * v15 ^ (uint64_t)0x68A8FCAE) >> 23)
17 + stringLiteralLength - 1984691239)
18 + (char *)mmf2.getData () + valuestringLiteralData;
19

20 uint32_t length = -404766271 * (1609814976 * ((59818 *
v15 + 59818) ^ 0x68A8FCAEui64) >> 23)

21 - ( -404766271 * (1609814976 * (( int64_t)59818 * v15 ^
(uint64_t)0x68A8FCAE) >> 23)

22 + stringLiteralLength)
23 + stringLiteraldataIndex;
24

25 }
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One remaining key function is String::NewLen. Upon inspecting its decompiled
code, a very complex and intricate structure presents itself:

1 [...]
2 v12 = v11 & 0xFFFFFFFFFFFFFFFEui64;
3 v13 = 0i64;
4 v14 = _mm_load_si128 ((const __m128i *)&xmmword_7FFE8A742C30);
5 v15 = _mm_load_si128 ((const __m128i *)&xmmword_7FFE8A742C40);
6 v16 = _mm_load_si128 ((const __m128i *)&xmmword_7FFE8A742C50);
7 v17 = _mm_load_si128 ((const __m128i *)&xmmword_7FFE8A742C60);
8 do
9 {

10 v18 = _mm_xor_si128(_mm_loadu_si128 (( const __m128i *)(a2 +
v13 + 16)), _mm_add_epi64(v10 , v14));

11 _mm_store_si128(
12 (__m128i *)((char *)&v25 + v13),
13 _mm_xor_si128(_mm_loadu_si128 ((const __m128i *)(a2 + v13)),

v10));
14 _mm_store_si128 (( __m128i *)((char *)&v25 + v13 + 16), v18);
15 v19 = _mm_xor_si128(_mm_loadu_si128 (( const __m128i *)(a2 +

v13 + 48)), _mm_add_epi64(v10 , v16));
16 _mm_store_si128(
17 (__m128i *)((char *)&v25 + v13 + 32),
18 _mm_xor_si128(_mm_loadu_si128 ((const __m128i *)(a2 + v13 +

32)), _mm_add_epi64(v10 , v15)));
19 _mm_store_si128 (( __m128i *)((char *)&v25 + v13 + 48), v19);
20 v10 = _mm_add_epi64(v10 , v17);
21 v13 += 64i64;
22 v12 -= 2i64;
23 }
24 while ( v12 );
25 [...]

The preceding code snippet represents only a portion of the decryption loop, and
its complexity already suggests a challenging reverse engineering task. The functions
with si128 suffixes (e.g., _mm_load_si128, _mm_xor_si128) operate on 128-bit data
types and are compiler intrinsics -—- special functions provided by the compiler that
often map directly to assembly instructions[9][10]. The prevalence of these intrinsics
contributes to the difficulty of manual analysis, potentially making it even more
time-consuming than the previous analysis..

Given this complexity, it’s worth to look at previously mentioned methods for
obtaining the function’s results in a “black-box” manner, avoiding a full reversal of
its internal logic. Previously, direct calling of functions from the DLL was dismissed
due to uninitialized global variables. However, if the target function, doesn’t rely on
global variables, direct invocation becomes a more viable strategy, which is the case
here. Therefore, instead of reimplementing its logic, it can be called directly.
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4.2.2 DLL Function Invocation

In DLL files without any symbols it’s near impossible to call a desired function
without prior knowledge of its memory and function layout. In this case, thanks to
the static analysis the exact offset of the function sub_7FFE89B01120 is known —
which as the name points is at 0x7FFE89B01120. However when the DLL is loaded
into the memory, its address is different, therefore it’s needed to calculate an offset of
the function into the DLL, which is relative to the address the binary was rebased at.
One last piece needed to call the function is to match the type it returns, which is a
pointer to IL2CPPString. In the source code definition the structure and dependent
ones look like following:

1 struct IL2CPPString
2 {
3 IL2CPPObject object;
4 int32_t length; ///< Length of string
5 excluding the trailing null
6 (which is included in ’chars ’).
7 IL2CPPChar chars[IL2CPP_ZERO_LEN_ARRAY ];
8 };
9

10 struct IL2CPPObject
11 {
12 IL2CPPClass *klass;
13 MonitorData *monitor;
14 };

It might be troublesome to import other definitions, such as the members of
IL2CPPObject as they contain other nested definitions. An easy way to circumvent
that is using void pointers instead of those structures, as for this purpose it will be
the same, since their size is also 8 bytes, and accessing the object field will not be
needed.

The relevant portion of the source code, which handles the task of initiating the
call to the function within the DLL can be seen in the listing 4.1.
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1

2 HMODULE hModule =
LoadLibraryW(L"C:\\ Windows \\ System32 \\ UserAssembly.dll");

3 HMODULE baseAddress = GetModuleHandleW(L"UserAssembly.dll");
4 const uintptr_t offset = 0x631120;
5 void *funcAddr = reinterpret_cast <void *>(( uintptr_t)hModule +

offset);
6 uintptr_t functionAddress = reinterpret_cast <uintptr_t >( baseAddress)

+ offset;
7 StringDecryptFunc decryptFunc =

reinterpret_cast <StringDecryptFunc >( functionAddress);
8

9 cout << "length: " << length << "\n";
10 char * result = (char *) decryptFunc(v15 , str , length);
11 if (result != nullptr)
12 {
13

14 IL2CPPString* IL2CPPStr = reinterpret_cast <IL2CPPString *>(result);
15 wchar_t* wideStr = reinterpret_cast <wchar_t*>(IL2CPPStr ->chars);
16 wstring_convert <std:: codecvt_utf8_utf16 <wchar_t >> converter;
17 wstring wstr(wideStr , IL2CPPStr ->length);
18 string utf8str = converter.to_bytes(wstr);
19

20 std::cout << "UTF -8 Output: " << utf8str << std::endl;
21

22 }
23 else
24 {
25 cout << "Decryption failed." << endl;
26 }

Listing 4.1: Finished code handling calling the DLL function.

With the whole code finished, the program can now be executed with the pre-
viously chosen example index:

Figure 4.4: Console output for the decryption code.
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As seen a fully deobfuscated string presents itself, one that seems like a debug
message. Now that it’s known what process occurs with string literals it’s worth to
look at strings.

4.2.3 Strings recovery

While the process for string literals was quite convoluted, retrieving the strings is
generally simpler. This process will be described briefly, as the main decryption
method is quite similar to that of string literals, though the access method differs.

A function used to access these strings is GetStringFromIndex. Inside this func-
tion, a decryption process occurs that is similar to the one seen for string literals, as
it also uses intrinsics. However, in this case, GetStringFromIndex typically accepts
only one argument: the string’s index. This direct indexing potentially allows the
function to be called without the multi-step (like offset and length lookups) that was
required for string literals.

However with that, a new issue arises: the indices for these normal strings may
not be hardcoded, unlike some indices encountered for string literals or in other
examples. To understand how to work around that, it is worth to examine an
example of how GetStringFromIndex is invoked in the source code:

1 void AssemblyName :: FillNativeAssemblyName(const IL2CPPAssemblyName&
aname , IL2CPPMonoAssemblyName* nativeName)

2 {
3 nativeName ->name =

StringUtils :: StringDuplicate(IL2CPP ::vm:: MetadataCache ::
4 GetStringFromIndex(aname.nameIndex));
5

6 [...]
7 }

Similar references to indexed strings appear when examining the application’s
code and data structures. For instance, structs stored in the metadata file often
contain an index to a string, rather than embedding the string itself. Then, when
these structs are populated (during runtime), a function like GetStringFromIndex
would be called to retrieve the string corresponding to that index.

There are a few potential solutions for retrieving these strings. First, since
the starting location of the string table is often known, it is possible to begin de-
crypting or reading the strings sequentially from that point. As the strings are
null-terminated, the end of one string marks the beginning of the next. This process
can be repeated until the entire table is processed. Another method involves using
existing software designed for IL2CPP projects; such tools will be described in the
next chapter.
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Recovering main binary’s
information

With the methods described in this research it’s now possible to recover informa-
tion using the metadata file, such as names of classes, methods, fields, parame-
ters, enums, and other code elements. It can be automatically done with tools like
IL2CPPDumper or IL2CPPInspector. The possible solutions for both will be de-
scribed.

5.1 IL2CPPDumper

IL2CPPDumper[11] is an open-source tool developed on GitHub. It recovers the
structure of an application’s main DLL, though not the original C# code itself —
a feature no publicly available tool had accomplished at the time of this writing
(although one is currently in development [12]). The program also generates scripts
to import symbols into popular reverse engineering tools like Ghidra, IDA, and Bi-
nary Ninja. Additionally, it can bypass simple metadata obfuscations, generate a file
containing string literals, and perform other useful tasks. It also has the ability to
recover structures and their fields which are stored in a header file, create fake (or
"dummy") DLL files that represent the application’s original managed code assem-
blies and many other features that make it easier to comprehend the application’s
structure.

However, the obfuscation encountered in this study was by no means simple.
Extensive metadata reordering, the splitting of metadata into two files, and the
presence of decoy code snippets can make automation difficult, even with smart
heuristics. Consequently, to effectively use IL2CPPDumper with the target binary,
it is necessary to construct an entirely new, deobfuscated metadata file. This new
file needs to adhere to original formatting conventions, including an ordered header
and decrypted string literals. While this reconstruction process can be tedious and
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Figure 5.1: IL2CPPInspector user interface.

requires significant manual effort prone to errors, it is a feasible solution.

5.2 IL2CPPInspector

Another tool that can prove helpful in reverse engineering the main binary is IL2CPP-
Inspector[13]. This tool, although perhaps less popular, offers functionality similar
to IL2CPPDumper and even includes a graphical user interface (GUI), as shown in
Figure 5.1.

A key differentiator from IL2CPPDumper is IL2CPPInspector’s support for
plugin creation. The developer designed this tool with community-shared plugins in
mind, facilitating their easy development. These plugins can intervene in the binary
and metadata loading process — for instance, to handle obfuscated or reordered files.
The plugins are highly customizable: within them, one can correct file reordering by
pointing to the correct data structures and even call functions from the main binary
to decrypt files, a feature that would be extremely useful in this case. String retrieval
is also supported. A plugin can scan metadata definitions that reference a string
index and then call GetStringFromIndex to retrieve the decrypted string.
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However, this approach would still require modifications to the main metadata
file due to the presence of the startup-metadata.dat file. This file could either
be manually merged into the primary global-metadata.dat file, or the IL2CPP-
Inspector loading process itself could be further modified to accommodate it, po-
tentially simplifying its use for other users that would want to analyze the game.
What’s more, a plugin written by IL2CPPInspector’s author for another game from
the same publisher is available [14]. However, it differs significantly from the current
case, as it was developed four years ago when the obfuscation methods employed
were simpler and no additional metadata files were present.





Chapter 6

Summary and conclusion

This work looked closely at how to analyze IL2CPP applications that are heavily
obfuscated, making them difficult to understand. Specific techniques were introduced
and tools developed to get past these complex defenses and carefully extract key
information from their protected metadata and program code. By concentrating on
these core tasks — getting crucial data and uncovering important code sections.

The techniques detailed were successful in retrieving this essential information,
effectively bypassing deliberate efforts by developers to hinder analysis. Additionaly,
combining these successful techniques with proposed tools allows restoring the orig-
inal .NET environment’s structure. This, in turn, makes it much easier to proceed
with further analysis and ultimately helps gaining a deeper understanding of how
specific IL2CPP applications function.
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